Охранные устройства


Датчики колебаний для охранной сигнализации


Кроме обычных контактных датчиков необходимым элементом для любой охранной сигнализации, устанавливаемой на автомобиле, является датчик колебаний. Он должен реагировать также на удары и любые вибрации корпуса. При этом необходимо обеспечить срабатывание, если амплитуда колебаний превысит заданную величину.

В простейших серийных промышленных системах охраны (среднего класса) чаще всего используют один из двух видов датчиков колебаний: выполненные на основе пьезоэффекта или электромагнитной индукции.

В литературе уже публиковались конструкции электромагнитных датчиков, выполненные на основе механизма стрелочного измерительного прибора — микроамперметра [Л20, стр. 86]. Предлагаемый

датчик имеет аналогичный принцип работы (магнитное попе наводит Э. Д. С. в катушке), но его конструкция является более стойкой к механическим перегрузкам, так как в этой колебательной системе катушка закреплена неподвижно, а перемещается только магнит. Вся конструкция позволяет уменьшить габариты датчика.

По сравнению с датчиками, выполненными на основе пьезоэлемента, на данное устройство меньше влияет изменение температуры и оно более чувствительно, особенно к медленным колебаниям корпуса автомобиля.

Датчиком вибрации (ударов) и колебаний является катушка L1 с закрепленным над ней магнитом, рис. 3.12. Магнит крепится клеем "Момент" к латунной пружинящей пластине. Все элементы крепления катушки, показанные на рисунке, использованы латунные (подойдет также любой другой не магнитный материал, например алюминий или пластмасса).




Катушка датчика намотана на пластмассовом каркасе, рис. 3.13, проводом ПЭЛ диаметром 0,08...0,1 мм (внавал до заполнения). Это примерно около 1800 витков (в моем варианте индуктивность получилась 3,3 мГн).

При колебаниях магнита в катушке наводится напряжение, которое усиливается операционным усилителем (DA1), рис. 3.14. Операционный усилитель работает без обратной связи — с максимальным коэффициентом усиления, т.е. как компаратор. В исходном состоянии на его выходе DA1/6 будет уровень лог. "0" (не более 0,5 В), а при колебаниях магнита появятся импульсы. Эти импульсы открывают транзистор VT1 и начнет моргать светодиод HL1. Транзистор VT2 должен быть постоянно открыт поданным на базу положительным напряжением в случае если сигнализация включена.





Стабилитрон VD1 предотвращает повреждение микросхемы повышенным напряжением, а диод VD2 предохраняет от неправильной полярности подачи питания на схему датчика. Вся схема датчика за счет того, что в нем используется микромощная микросхема, потребляет от источника 12 В в режиме ожидания ток не более 0,1 мА, а при свечении светодиода до 6 мА. Чувствительность датчика зависит от гибкости пластины, на которой крепится магнит, и может быть довольно высокой. И чтобы ее снизить до нужного уровня, служит регулировочный резистор R2, который позволяет менять порог срабатывания компаратора DA1. Это удобно при неблагоприятных погодных условиях. Например, во время дождя или сильного ветра, когда чувствительность следует уменьшить, чтобы исключить ложные срабатывания. А для удобства настройки чувствительности датчика служит светодиод HL1. Момент срабатывания контролируется по его свечению. Если датчик будет установлен в самом блоке охраны, то сигнал с коллектора VT1 может сразу подключаться к сигнализации. При установке устройства в автомобиле следует учитывать, что от места установки, а также плоскости колебаний магнита, зависит чувствительность датчика. Поэтому конструктивно датчик удобнее выполнять в виде отдельного блока, который подключается к сигнализации тремя проводами. Аналогично делают в промышленных системах охраны, например в системе "Red Scorpio-600" третий провод применяется для электронного управления включением датчика (в случае, если вы его не будете использовать, то вместо транзистора VT2 на плате устанавливается перемычка эмиттер-коллектор). В схеме применены детали: подстроенный резистор R2 типа СП4-9 на 0,5 Вт (СПЗ-166), остальные МЛТ мощностью 0.125 Вт. Транзисторы могут быть с любой последней буквой в обозначении и они заменимы на любые аналогичные с соответствующей проводимостью. Конденсаторы С1, СЗ из серии К10 (К10-17), оксидный С2 — К50-35 на 25 В. Светодиод HL1 может применяться любого типа. Для удобства подключения внешних проводов к датчику на плате установлена трехсекционная коммутационная колодка с винтовыми зажимами — она впаивается в плату. Все детали схемы размещены на односторонней печатной плате из стеклотекстолита, рис. 3.15. Для увеличения плотности монтажа часть резисторов устанавливается вертикально, а стабилитрон VD1 используется в пластмассовом корпусе.



В качестве корпуса удалось найти подходящую пластмассовую коробку, рис. 3.16 (под нее и выполнена плата). Для подключения удаленного датчика к блоку охраны потребуется собрать переходной узел на транзисторе VT3, рис. 3.17. Он позволяет формировать уровень лог. "1" для системы охраны при срабатывании датчика. При свечении светодиода HL1 в цепи питания датчика увеличивается ток. Этот ток, проходя через резистор R8, создает на нем падение напряжения, достаточное для открывания транзистора VT3.

Чувствительность транзистора устанавливается резистором R8, а резистор R7 предотвращает повреждение транзистора VT3 в случае короткого замыкания цепей питания датчика. Можно также изготовить датчик вибрации на основе цилиндрического пьезоэлемента от головки звукоснимателя, например типа ГЗП-311, рис. 3.18. Такие звукосниматели вряд ли еще производятся, но в продаже из старых запасов пока встречаются. Головка имеет пьезоэпемент в виде трубки. Для его использования в качестве датчика потребуется минимальная доработка. Она заключается в снятии иголки и укорачивании пластмассовых ограничительных выступов (1), как это показано на рисунке. На выступающий конец пьезоэлемента надеваем полиэтиленовую трубку соответствующего диаметра, а на ней закрепляем медную цилиндрическую втулку (2). Втулка имеет внутри центральное отверстие с резьбой М2,5 (резьба обеспечивает лучшее сцепление с полиэтиленовой трубкой, что исключит соскальзывание груза).


Так как пьезоэлемент имеет гибкое крепление, то малейшие вибрации закрепленного на нем груза (2) преобразуются в напряжение. Схема усилителя для такого датчика может быть аналогичной приведенной выше, но с небольшими изменениями, показанными на рис. 3.19. Применение такой конструкции пьезодатчика позволяет обеспечить чувствительность к колебаниям в двух плоскостях, а также немного уменьшить габариты устройства.

В качестве пьезодатчика возможно также использование пьезоизлучателей из серии ЗП, но в этом случае чувствительность такого устройства уменьшится и срабатывать оно будет только при ударах. В некоторых серийных импортных сигнализациях используется аналогичная конструкция датчика колебаний на основе пьезоэлемента. Отличие заключается в том, что на пьезоэлемент надета толстая сепиконовая трубка, а на ней уже закреплен груз. На рис. 3.20 для примера приведена схема так называемого "двухзонного" датчика, выполненного на основе пьезоэлемента. Такие устройства используются в некоторых импортных автомобильных системах охраны. Все устройство собрано на одной микросхеме, содержащей внутри четыре универсальных операционных усилителя. Датчик имеет два регулятора. Резистор R2 позволяет менять общую чувствительность схемы, a R6 дает возможность устанавливать нужную постоянную времени цепи заряда конденсатора С8, что регулирует чувствительность устройства в зависимости от продолжительности и силы внешних воздействий. При эксплуатации охраны для облегчения настройки чувствительности датчика в схеме имеются светодиоды HL1, HL2. По их свечению можно контролировать момент срабатывания.


Содержание раздела